This was a subtle logic error when building the `plots: dict` we weren't
adding the "main (ohlc or other source) chart" from the `LinkedSplits`
set when interacting with some sub-chart from `.subplots`..
Further this tries out bypassing `numpy.median()` altogether by just
using `median = (ymx - ymn) / 2` which should be nearly the same?
Facepalm, obviously absolute array indexes are not going to necessarily
align vs. time over multiple feeds/history. Instead use
`np.searchsorted()` on whatever curve has the smallest support and find
the appropriate index of intersection in time so that alignment always
starts at a sensible reference.
Also adds a `debug_print: bool` input arg which can enable all the
prints when working on this.
We can determine the major curve (in view) in the first pass of all
`Viz`s so drop the 2nd loop and thus the `mxmn_groups: dict`. Also
simplifies logic for the case of only one (the major) curve in view.
Turns out this is a limitation of the `ViewBox.setYRange()` api: you
can't call it more then once and expect anything but the first call to
be applied without letting a render cycle run. As such, we wait until
the end of the log-linear scaling loop to finally apply the major curves
y-mx/mn after all minor curves have been evaluated.
This also drops all the debug prints (for now) to get a feel for latency
in production mode.
When there are `N`-curves we need to consider the smallest
x-data-support subset when figuring out for each major-minor pair such
that the "shorter" series is always returns aligned to the longer one.
This makes the var naming more explicit with `major/minor_i_start` as
well as clarifies more stringently a bunch of other variables and
explicitly uses the `minor_y_intersect` y value in the scaling transform
calcs. Also fixes some debug prints.
In very close manner to the original (gut instinct) attempt, this
properly (y-axis-vertically) aligns and scales overlaid curves according
to what we are calling a "log-linearized y-range multi-plot" B)
The basic idea is that a simple returns measure (eg. `R = (p1 - p0)
/ p0`) applied to all curves gives a constant output `R` no matter the
price co-domain in use and thus gives a constant returns over all assets
in view styled scaling; a intuitive visual of returns correlation. The
reference point is for now the left-most point in view (or highest
common index available to all curves), though we can make this
a parameter based on user needs.
A slew of debug `print()`s are left in for now until we iron out the
remaining edge cases to do with re-scaling a major (dispersion) curve
based on a minor now requiring a larger log-linear y-range from that
previous major' range.
In the dispersion swing calcs, use the series median from the in-view
data to determine swing proportions to apply on each "minor curve"
(series with lesser dispersion the one with the greatest). Track the
major `Viz` as before by max dispersion. Apply the dispersion swing
proportions to each minor curve-series in a third loop/pass of all
overlay groups: this ensures all overlays are dispersion normalized in
their ranges but, minor curves are currently (vertically) centered (vs.
the major) via their medians.
There is a ton of commented code from attempts to try and vertically
align minor curves to the major via the "first datum" in-view/available.
This still needs work and we may want to offer it as optional.
Also adds logic to allow skipping margin adjustments in `._set_yrange()`
if you pass `range_margin=None`.
On overlaid ohlc vizs we compute the largest max/min spread and
apply that maxmimum "up and down swing" proportion to each `Viz`'s
viewbox in the group.
We obviously still need to clip to the shortest x-range so that
it doesn't look exactly the same as before XD
We were hacking this before using the whole `ChartView._maxmin()`
setting stuff since in some cases you might want similarly ranged paths
on the same view, but of course you need to max/min them together..
This adds that group sorting by using a table of `dict[PlotItem,
tuple[float, float]` and taking the abs highest/lowest value for each
plot in the viz interaction update loop.
Also removes the now commented signal registry calls and thus
`._yranger`, drops the `set_range: bool` from `._set_yrange` and adds
and extra `.maybe_downsample_graphics()` to the mouse wheel handler to
avoid a weird slow debounce where ds-ing is delayed until a further
interaction.
It's kind of hard to understand with the C++ fan-out to multiple views
(imo a cluster-f#$*&) and seems honestly just plain faster to loop (in
python) through all the linked view handlers XD
Core adjustments:
- make the panning and wheel-scroll handlers just call
`.maybe_downsample_graphics()` directly; drop all signal emissions.
- make `.maybe_downsample_graphics()` loop through all vizs per subchart
and use the new pipeline-style call sequence of:
- `Viz.update_graphics() -> <read_slc>: tuple`
- `Viz.maxmin(i_read_range=<read_slc>) -> yrange: tuple`
- `Viz.plot.vb._set_yrange(yrange=yrange)`
which inlines all the necessary calls in the most efficient way whilst
leveraging `.maxmin()` caching and ymxmn-from-m4-during-render to
boot.
- drop registering `._set_yrange()` for handling `.sigRangeChangedManually`.
The max min for a given data range is defined on the lowest level
through the `Viz` api intermingling it with the view is a layering
issue. Instead make `._set_yrange()` call the appropriate view's viz
(since they should be one-to-one) directly and thus avoid any callback
monkey patching nonsense.
Requires that we now make `._set_yrange()` require either one of an
explicit `yrange: tuple[float, float]` min/max pair or the `Viz` ref (so
that maxmin can be called) as input. Adjust
`enable/disable_auto_yrange()` to bind in a new `._yranger()` partial
that's (solely) needed for signal reg/unreg which binds in the now
required input `Viz` to these methods.
Comment the `autoscale_overlays` block in `.maybe_downsample_graphics()`
for now until we figure out the most sane way to auto-range all linked
overlays and subplots (with their own overlays).
Since `ChartPlotWidget.update_graphics_from_flow()` is more or less just
a call to `Viz.update_graphics()` try to call that directly where
possible.
Changes include:
- calling the viz in the display state specific `maxmin()`.
- passing a viz instance to each `ChartView._set_yrange()` call (in prep
of explicit group auto-ranging); not that this input is unused in the
method for now.
- drop `bars_range` var passing since we don't use it.
- adjust zoom focal to be min of the view-right coord or the right-most
point on the flow graphic in view and drop all the legacy l1-in-view
focal point cruft.
- flip to not auto-scaling overlays by default.
- change the `._set_yrange()` margin to `0.09`.
- drop `use_vr: bool` usage.
Drop all attempts at rewiring `ViewBox` signals, monkey-patching
relayee handlers, and generally modifying event source public
attributes. Instead take a much simpler approach where the event source
graphics object simply has it's handler dynamically overridden by
a broadcaster function which relays to all consumers using a Python
loop.
The benefits of this much simplified approach include:
- avoiding the tedious and often complex (re)connection of signals between
the source plot and the overlayed consumers.
- requiring zero modification of the public interface of any of the
publisher or consumer `ViewBox`s, no decoration, extra signal
definitions (eg. previous `mouseDragEventRelay` or the like).
- only a single dynamic method override on the event source graphics object
(`ViewBox`) which does the broadcasting work and requires no
modification to handler implementations.
Detailed `.ui._overlay` changes:
- drop `mk_relay_signal()`, `enable_relays()` which removes signal/slot
hacking methodology.
- drop unused `ComposedGridLayout.grid` and `.reverse`, change some
method names: `.insert()` -> `.insert_plotitem()`, `append()` ->
`.append_plotitem()`.
- in `PlotOverlay`, again drop all signal/slot rewiring in
`.add_plotitem()` and instead add our new closure based python-loop in
`broadcast()` routine which is used to override the event-source
object's handler.
- comment out all the auxiliary/want-to-have event source selection
methods for now.
It ended up being what'd you expect, races on the accessing shm buffer
data by the UI during the whole "mega-async-startup-everything" phase XD
So we add the following list of ad-hoc startup steps:
- do `.default_view()` on the slow chart after the fast chart is mostly
fully spawned with the intention being to capture the state where the
historical buffer is mostly loaded before sizing the view to the
graphical form of the data.
- resize slow chart sidepanes from the fast chart just before sleeping
forever (and after order mode has booted).
Since downsampling with the more correct version of m4 (uppx driven
windows sizing) is super fast now we don't need to avoid downsampling
on low uppx values. Further all graphics objects now support in-view
slicing so make sure to use it on interaction updates. Pass in the view
profiler to update method calls for more detailed measuring.
Even moar,
- Add a manual call to `.maybe_downsample_graphics()` inside the mouse
wheel event handler since it seems that sometimes trailing events get
lost from the `.sigRangeChangedManually` signal which can result in
"non-downsampled-enough" graphics on chart given the scroll amount;
this manual call seems to entirely fix this?
- drop "max zoom" guard since internals now support (near) infinite
scroll out to graphics becoming a single pixel column line XD
- add back in commented xrange signal connect code for easy testing to
verify against range updates not happening without it
Since we have in-view style rendering working for all curve types
(finally) we can avoid the guard for low uppx levels and without losing
interaction speed. Further don't delay the profiler so that the nested
method calls correctly report upward - which wasn't working likely due
to some kinda GC collection related issue.
Allows for removing resize callbacks for a flow/overlay that you wish to
remove from view (eg. unit volume after dollar volume is up) and thus
less general interaction callback overhead for any plot you don't wish
to show or resize.
Further,
- drop the `autoscale_linked_plots` block for now since with
multi-view-box overlays each register their own vb resize slots
- pull the graphics object from the chart's `Flow` map inside
`.maybe_downsample_graphics()`