`msgspec` sends python lists over the wire
(https://github.com/jcrist/msgspec/issues/30) which is fine and dandy
but we use them as lookup keys so we need to be sure we tuple-cast
first.
This mostly adds the api described in
https://github.com/goodboy/tractor/issues/53#issuecomment-806258798
The first draft summary:
- formalize bidir steaming using the `trio.Channel` style interface
which we derive as a `MsgStream` type.
- add `Portal.open_context()` which provides a `trio.Nursery.start()`
remote task invocation style for setting up and tearing down tasks
contexts in remote actors.
- add a distinct `'started'` message to the ipc protocol to facilitate
`Context.start()` with a first return value.
- for our `ReceiveMsgStream` type, don't cancel the remote task in
`.aclose()`; this is now done explicitly by the surrounding `Context`
usage: `Context.cancel()`.
- streams in either direction still use a `'yield'` message keeping the
proto mostly symmetric without having to worry about which side is the
caller / portal opener.
- subtlety: only allow sending a `'stop'` message during a 2-way
streaming context from `ReceiveStream.aclose()`, detailed comment
with explanation is included.
Relates to #53
Since we currently have no real "discovery protocol" between process
trees, the current naive approach is to check via a connect and drop to
see if a TCP server is bound to a particular address during root actor
startup. This was a historical decision and had no real grounding beyond
taking a simple approach to get something working when the project
was first started.
This is obviously problematic from an error handling perspective since
we need to be able to avoid such quick connect-and-drops from cancelling
an "arbiter"'s (registry actor's) channel-msg loop machinery (which
would propagate and cancel the actor).
For now we map this particular TCP error, which gets remapped by `trio`
as a `trio.BrokenResourceError` to our own internal `TransportClosed`
which is swallowed by channel message loop processing and indicates
a graceful teardown of the far end actor.
You can always wrap a sync function in an async one and there seems to
be no good reason to support invoking them directly especially since
cancellation won't work without some thread hackery. If it's requested
we'll point users to `trio-parallel`.
Resolves#77
Add a sync method that can be used to cancel the current actor from
a synchronous context. This is useful in debugging situations where
sync debugger code may need to kill the process tree.
Also, make the internal "lifetime stack" a global var; easier to manage
from client code that may was to add callbacks prior to the actor
runtime being fully setup.
This begins the move to dropping support for `tractor.run()` which we
don't really need since the runtime is started (as it always has been)
from a new sub-task / nursery. Instead this introduces starting the
actor tree through a `open_root_actor()` async context manager which
we'll likely implicitly call (from the root) on the first use of an
actor nursery.
Drop `_actor._start_actor()` and factor its contents into this new api.
Make `run()` and `run_daemon()` use `open_root_actor()` until we decide
to remove them.
Relates to #168 and #177
This resolves and completes #69 allowing all RPC invocation APIs to pass
function references directly instead of explicit `str` names for the
target namespace and function (this is still done implicitly
underneath). This brings us closer to `trio`'s task running API as well
as acknowledges that any inter-host RPC system (and API) will likely
need to be implemented on top of local RPC primitives anyway. Even if
this ends up **not** being true we can always go to "function stubs" as
part of our IAC protocol or, add a new method to do explicit namespace
calls: `.run_from_module()` or whatever everyone votes on.
Resolves#69
Further, this commit drops `Actor.statespace` from the entire system
since a user can easily get this same functionality using module
level variables. Fix docs to match all these changes (luckily mostly
already done due to example scripts referencing).
Turns out this is a lower level issue in terms of the stdlib's default
`pdb.Pdb` settings and how they conflict with `trio`s cancellation and
KBI handling. The details are hashed out more thoroughly in
python-trio/trio#1155. Maybe we can get a fix in trio so things are
solved under our feet :)
The channel server should be torn down *before* the rpc
task/service nursery. Do this explicitly even in the root's main task
to avoid a strange hang I found in the pubsub tests. Start dropping
the `warnings.warn()` usage.
Add `Actor._cancel_called` and `._cancel_complete` making it possible to
determine whether the actor has started the cancellation sequence and
whether that sequence has fully completed. This allows for blocking in
internal machinery tasks as necessary. Also, always trigger the end of
ongoing rpc tasks even if the last task errors; there's no guarantee the
trio cancellation semantics will guarantee us a nice internal "state"
without this.
Every subactor in the tree now receives the socket (or whatever the
mailbox type ends up being) during startup and can call the new
`tractor._discovery.get_root()` function to get a portal to the current
root actor in their tree. The main reason for adding this atm is to
support nested child actors gaining access to the root's tty lock for
debugging.
Also, when a channel disconnects from a message loop, might as well kill
all its rpc tasks.
This is needed in order to avoid the deadlock condition where
a child actor is waiting on the root actor's tty lock but it's parent
(possibly the root) is waiting on it to terminate after sending a cancel
request. The solution is simple: create a cancel scope around the
request in the child and always cancel it when a cancel request from the
parent arrives.